skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Di Cecco, Grace J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent reports of insect declines have raised concerns about the potential for concomitant losses to ecosystem processes. However, understanding the causes and consequences of insect declines is challenging, especially given the data deficiencies for most species. Needed are approaches that can help quantify the magnitude and potential causes of declines at levels above species. Here we present an analytical framework for assessing broad‐scale plant–insect phenologies and their relationship to community‐level insect abundance patterns. We intentionally apply a species‐neutral approach to analyse trends in phenology and abundance at the macroecological scale. Because both phenology and abundance are critical to ecosystem processes, we estimate aggregate metrics using the overwintering (diapause) stage, a key species trait regulating phenology and environmental sensitivities. This approach can be used across broad spatiotemporal scales and multiple taxa, including less well‐studied groups. Using community (‘citizen’) science butterfly observations from multiple platforms across the Eastern USA, we show that the relationships between environmental drivers, phenology and abundance depend on the diapause stage. In particular, egg‐diapausing butterflies show marked changes in adult‐onset phenology in relation to plant phenology and are rapidly declining in abundance over a 20‐year span across the study region. Our results also demonstrate the negative consequences of warmer winters for the abundance of egg‐diapausing butterflies, irrespective of plant phenology. In sum, the diapause stage strongly shapes both phenological sensitivities and developmental requirements across seasons, providing a basis for predicting the impacts of environmental change across trophic levels. Utilizing a framework that ties thermal performance across life stages in relation to climate and lower‐trophic‐level phenology provides a critical step towards predicting changes in ecosystem processes provided by butterflies and other herbivorous insects into the future. 
    more » « less
  2. Abstract The availability of citizen science data has resulted in growing applications in biodiversity science. One widely used platform, iNaturalist, provides millions of digitally vouchered observations submitted by a global user base. These observation records include a date and a location but otherwise do not contain any information about the sampling process. As a result, sampling biases must be inferred from the data themselves. In the present article, we examine spatial and temporal biases in iNaturalist observations from the platform's launch in 2008 through the end of 2019. We also characterize user behavior on the platform in terms of individual activity level and taxonomic specialization. We found that, at the level of taxonomic class, the users typically specialized on a particular group, especially plants or insects, and rarely made observations of the same species twice. Biodiversity scientists should consider whether user behavior results in systematic biases in their analyses before using iNaturalist data. 
    more » « less
  3. Abstract Understanding spatiotemporal variation in environmental conditions is important to determine how climate change will impact ecological communities. The spatial and temporal autocorrelation of temperature can have strong impacts on community structure and persistence by increasing the duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial rescue effects by synchronizing spatially segregated populations. Although increases in spatial and temporal autocorrelation of temperature have been documented in historical data, little is known about how climate change will impact these trends. We examined daily air temperature data from 21 General Circulation Models under the business-as-usual carbon emission scenario to quantify patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and temporal autocorrelation increased over time, there was significant regional variation in the temporal autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase of the spatial autocorrelation over the second half of the 21stcentury. Overall, our results suggest that ecological populations might experience elevated extinction risk under climate change because increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and temporal refugia. 
    more » « less